

## Year 8 Maths Learning Journey

Spring half term 1 – Geometry of Angle and Shape

Content – Including 'Big Questions'

| Core knowledge; Constructions and angles                                                                              | Complete |
|-----------------------------------------------------------------------------------------------------------------------|----------|
| <b>Using a compass -</b> How does the distance between the point and the pencil tip affect the circle?                |          |
| Constructing a triangle from SSS - Is it possible to make a triangle from any three sides?                            |          |
| Measuring and classifying angles - Do lines have to meet to form an angle?                                            |          |
| Core knowledge; Angles – Positional knowledge of angles                                                               | Complete |
| Adjacent angles on a straight line - Can I add any pair of angles on a straight line?                                 |          |
| <b>Vertically opposite angles -</b> To be vertically opposite, must one angle be above the other?                     |          |
| Corresponding angles on parallel lines - What is the positional relationship?                                         |          |
| Alternate angles on parallel lines - What is the positional relationship?                                             |          |
| Co-interior angles on parallel lines - What is the positional relationship?                                           |          |
| Core knowledge; Properties of triangles and quadrilaterals                                                            | Complete |
| <b>Deriving and using the sum of the interior angles of a triangle</b> - where are corresponding or alternate angles? |          |
| Constructing triangles using ASA - How can I construct a triangle with only 2 sides?                                  |          |
| Calculating angles in a quadrilateral - Does knowing interior angles of a triangle help?                              |          |
| Core knowledge; Interior and exterior angles of polygons                                                              | Complete |
| Deriving the sum of the interior angles of a pentagon -                                                               |          |
| Investigating the sum of the interior angles of a polygon -                                                           |          |
| Regular and Irregular polygons -                                                                                      |          |
| Using the formula for the sum of the interior angles in a polygon -                                                   |          |
| The sum of exterior angles in a polygon -                                                                             |          |

## Year 8 Maths Learning Journey

Spring half term 1 – Geometry of Angle and Shape



## Learning Checkpoints

| Learning Check Title                       | Score | Dirt |
|--------------------------------------------|-------|------|
| Constructions and angles                   |       |      |
| Angles – Positional knowledge of angles    |       |      |
| Properties of Triangles and Quadrilaterals |       |      |
| Interior and exterior angles of polygons   |       |      |

## Key Vocabulary

Circle; The set of all points in a plane which are at a fixed distance (the radius) from a fixed point (the centre) also in the plane Alternatively, the path traced by a single point travelling in a plane at a fixed distance (the radius) from a fixed point (the centre) in the same plane An angle is a measure of rotation and is often shown as the amount of rotation required to turn one line segment onto another where the two line segments meet at a point **Construct**: in Geometry means to draw shapes, angles or lines accurately. Radius: The distance from the center to the circumference of a circle Triangle; a three sided polygon Degree; The most common unit of measurement for angle. One whole turn is equal to 360 degrees, written 360o **Protractor**: An instrument for measuring angles. Acute: An angle between 0 o and 90 o. Obtuse: An angle greater than 900 but less than 180 o. Reflex: An angle that is greater than 1800 but less than 360°. Adjacent: two angles are adjacent if they have a common side and a common vertex. Vertex: The point at which two or more lines intersect. Plural: vertices Vertically opposite: angles that are opposite one another at a specific vertex and are created by two straight intersecting lines. Vertically opposite angles are equal to each other. Parallel: In Euclidean geometry, always equidistant. Parallel lines, curves and planes never meet however far they are produced or extended. **Corresponding angles**; the angles which occupy the same relative position at each intersection where a straight line crosses two others. If the two lines are parallel, the corresponding angles are equal. Alternate angles; Where two straight lines are cut by a third, as in the diagrams, the angles d and f (also c and e) are alternate. Where the two straight lines are parallel, alternate angles are equal. Equal: the same amount Co-interior: see diagram Regular (polygon): Describing a polygon, having all sides equal and all internal angles equal. Irregular: When the sides of a polygon are not all of equal length and the angles are not all of equal size. Interior angle; At a vertex of a polygon, the angle that lies within the polygon. **Exterior angle**; Of a polygon, the angle formed outside between one side and the adjacent side produced. This is the angle that has to be turned at the vertex if you are travelling around a shape