

Curriculum and Assessment Map

	Half Term 1	Half-Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
Year 11	Forces in balance Motion	Force and Motion	Wave Properties Electromagnetic waves	Electromagnetism and Revision	GCSE Exam Revision	GCSE Exam Revision
Fundamental Knowledge	 Define 'scalar' and 'vector' quantities. Compare a scalar and a similar vector and explain how these quantities are different. Categorise a wide range of quantities as either a vector or a scalar. Draw a scale diagram to represent a single vector. Use scale diagrams to represent the sizes of forces acting on an object. Give examples of contact and non- contact forces. 	effect of changing the mass or the force acting on an object on the acceleration of that object. 2. Perform calculations involving the rearrangement of the F = ma equation. 3. Required practical: Investigate the effect on the acceleration of an object of varying the force on it and of varying its mass. 4. State the	1.Identifywavesaseithertransverseorlongitudinal.2.2.Comparetransverseandlongitudinal waves interms of direction ofvibrationandpropagation.3.Investigatewave motion througha spring model.4.Identifywavesaseithermechanicalorelectromagnetic.5.Comparetransverseandlongitudinal waves interms of direction ofvibrationandpropagation.	 State the names of the poles of a magnet. Describe the interaction of magnetic poles (attraction and repulsion). List some magnetic and nonmagnetic metals. State that the magnetic field produced by a current carrying wire is circular. Describe the effect of increasing the current on the magnetic field around a wire. Describe the effect of reversing the 		

r					
	7. Describe the	using their mass and	6. Compare	direction of the	
	action of pairs of	the gravitational field	electromagnetic and	current in the wire.	
	forces in a limited	strength.	mechanical waves in	7. Sketch the	
	range of scenarios.	6. Apply the	terms of the need for	shape of a magnetic	
	8. Compare the sizes	concept of balanced	a medium.	field around a bar	
	of forces using the	forces to explain why	7. Calculate the	magnet.	
	unit newton (N).	an object falling	period of a wave from	8. Describe	
	9. Calculate resultant	through a fluid will	its frequency.	how the shape of a	
	force produced by	reach a terminal	8. Calculate the	magnetic field can be	
	several forces acting	velocity.	wave speed from the	investigated.	
	on an object in	7. Investigate	frequency and	9. Compare the	
	coplanar directions.	the relationship	wavelength.	Earth's magnetic field	
	10. Describe the	between the mass of	9. Use a wave	to that of a bar	
	effect of zero and	an object and the	front model to explain	magnet.	
	non-zero resultant	terminal velocity.	refraction and	10. Use the	
	forces on the motion	8. Categorise	reflection.	corkscrew rule to	
	of moving and	factors which affect	10. Describe the	determine the	
	stationary objects.	thinking distance,	relationship between	direction of the field	
	11. Define 'centre of	braking distance and	the angle of incidence	around a current	
	mass'.	both.	and angle of	carrying wire.	
	12. Describe an	9. Calculate the	refraction.	11. Describe the	
	experimental	braking and thinking	11. Explain	shape of the field	
	technique to	distance of a car.	refraction in terms of	produced by a	
	determine the centre	10. Describe the	changes in the speed	solenoid.	
	of mass of an irregular	relationship between	of waves when they	12. Describe the	
	object.	speed and both	move between one	operation of a	
	13. Use lines of	thinking and braking	medium and another.	moving-coil	
	symmetry to identify	distance.	12. Measure the	loudspeaker.	
	the location of the	11. Apply the	speed of a wave in	13. Apply	
	centre of mass of	equation p = mv to	water.	Fleming's left-hand	
	regular object.	find the momentum,	13. Measure the	rule to determine the	
	14. Find the resultant	velocity or mass of an	speed of a wave in a	direction of the force	
	of two forces at an	object.	solid (string).	acting on a conductor.	
	acute angle by	12. Use the	14. Describe the	14. Calculate the	
	drawing a scale	principle of	effect that changing	force acting on a	
	diagram.	conservation of	the frequency of a	conductor when it is	
		momentum to find	wave has on its	placed in a magnetic	
				field.	
K					

	15. Calculate the	the velocities of	wavelength in a		
	component of a force	objects.	medium.		
	using scale diagrams	13. Explain how	15. Calculate the		
	and ratios.	the behaviour of	speed of waves using		
	16. Resolve a single	objects during	the wave speed		
	force into two	explosions shows the	equation.		
	perpendicular	conservation of	16. Required		
	components.	momentum.	practical:		
	components.	14. State	Investigating plane		
	1. Use the	Hooke's law.	waves in a ripple tank		
	gradients of distance-	15. Explain the	and waves in a solid.		
	time graphs to	limitations of Hooke's	allu waves ill a soliu.		
	• .		17 Stata that		
	compare the speeds	law including the limit	17. State that		
	of objects.	of proportionally.	electromagnetic		
	2. Estimate	16. Calculate the	waves transfer energy		
	typical speeds for	force required to	without transferring		
	walking, running, and	cause a given	matter.		
	cycling.	extension in a spring	18. Identify the		
	3. Describe the	using the spring	position of EM waves		
	motion of an object	constant.	in the spectrum in		
	by interpreting	17. Compare	order of wavelength		
	distance-time graphs.	materials in terms of	and frequency.		
	4. Calculate the	elastic and non-elastic	19. State that all		
	speed of an object	behaviour.	EM waves travel at		
	and the time taken to	18. Required	the same speed in a		
	travel a given	practical: Investigate	vacuum.		
	distance.	the relationship	20. State that		
	5. Identify the	between force and	white light is a part of		
	features of a velocity-	extension for a spring.	the EM spectrum and		
	time graph.		composed of a range		
	6. Recall the		of frequencies.		
	equation relating		21. List some		
	velocity, acceleration,		simple examples of		
	and time.		the uses of light,		
	7. Calculate the		microwaves, and		
	change in velocity for		radio waves.		
	an object under		22. State that		
	constant acceleration		radio waves and		
L					

	for a given period of	microwaves are used
	time.	in communications
	8. Describe	through the
	sections of velocity-	atmosphere.
	time graphs, and	23. State that
	compare the	the higher the
	acceleration in these	frequency of a wave,
	sections.	the greater the rate of
	9. Measure the	data transfer possible.
	acceleration of an	24. Describe the
	object as it moves	sub-regions of the
	down a ramp.	radio spectrum.
	10. Calculate the	25. Describe the
	speed of an object by	uses and dangers of
	extracting data from	UV radiation.
	a distance-time	26. Describe the
	graph.	uses and dangers of X-
	11. Use a	rays and gamma
	tangent to determine	radiation.
	the speed of an	27. State some
	object from a	safety procedures
	distance-time graph.	that take place during
	12. Use the	the operation of
	equation $v^2 - u^2 = 2as$	devices that produce
	in calculations where	ionising radiation.
	the initial or final	28. Describe the
	velocity is zero.	formation of an X-ray
		photograph in terms
		of absorption or
		transmission.
		29. State that X-
		ray therapy can be
		used to kill cancerous
		cells in the body.
		30. Explain why
		a particular wave is
		suited to its
		application.
I		

			 31. Explain how various safety features reduce exposure to ionising radiation. 32. Required practical: Investigating infrared radiation. 		
Learning Checkpoint Tasks	 Scalar and vector quantities Resultant forces Motion graphs 	 Newton's second law Forces and braking 	 Types of waves The wave equation The EM spectrum Uses of EM waves 	 Magnetic materials Solenoids and electromagnets 	
Common Assessment Task	Paper 1 Mock Exam		Paper 2 Mock Exam		
Mock Exam (if applicable)	Paper 1 Mock Exam		Paper 2 Mock Exam		
Interleaved Knowledge	 Key knowledge acquired previously during the GCSE course: Energy Electricity 		Key knowledge acquired previously during the GCSE course: • Molecules and matter • Atoms and radiation • Forces		