

Curriculum and Assessment Map

	Half Term 1	Half-Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
Year 10	Molecules and Matter	Radioactivity	Changes in energy	Electrical Circuits	Electricity in the home	Forces and motion
Fundamental Knowledge	 Describe the arrangement of particles in a solid, a liquid, and a gas. Explain why the mass of a substance that changes state stays the same. Write down what the melting point of a substance mean. Describe the different changes of states. Use a temperature-time graph to find the melting point or the boiling point of a substance. Explain the different properties of a solid, a liquid, and a gas. Describe how increasing the temperate of a substance affects its internal energy. 	 Name the three types of nuclear radiation. Name the three sub-atomic particles found in an atom Describe some safety precautions used when dealing with radioactive materials. Describe how a Geiger counter can be used to detect radiation. Identify natural and man-made sources of background radiation. Compare the plum pudding model and the nuclear model of the atom. Describe the evidence provided by the Rutherford scattering experiment. 	 Describe a wide range of energy stores in different contexts. Describe changes in energy stores in terms of the process that causes the change. Use quantitative descriptions of changes in energy stores. State and apply the law of conservation of energy in straightforward situations. State the factors that affect the change in the gravitational potential energy store of a system. Calculate the gravitational potential energy store of a system using the mass 	 Label the constituents on an atom (proton, neutron, and electron) on a diagram. Describe how objects become charged in terms of electron transfer. Identify circuit components from their symbols. Construct a simple electrical circuit. Describe the operation of a variable resistor and a diode and their effects on current. Perform a range of calculations, including rearrangement of the equation Q=It. Measure the current in a circuit accurately and use it to calculate the rate of flow of electrons. 	 Define 'power'. Calculate the power of systems. Calculate the power of electrical devices. Select an appropriate fuse for a device. Describe how electricity is generated in a power station. Identify the main components of the National grid. Explain the role of the 'step-up' and 'step-down' transformers. Describe the characteristics of the UK mains supply. State simple differences between a.c. and d.c. sources. 	 Define 'scalar' and 'vector' quantities. Differentiate between distance and displacement. Identify forces as contact and non- contact. State the difference between the mass of an object and its weight. Calculate the weight of objects using their mass and the gravitational field strength. Apply the equation w=mg State what the centre of mass of an object is. Find the centre of mass of an object suspended from a fixed point.

8. Describe ho	w a 8. Describe the	gravitational field	8. Define	10. Compare a.c.	9. Find the
gas exerts pressure	n a properties of protons,	strength, and height.	resistance.	traces in terms of period	centre of mass of a
surface.	neutrons, and electrons.	7. State the	9. State Ohm's	and amplitude (voltage).	symmetrical object.
9. Describe	and 9. Identify the	factors that affect the	law and describe its	11. Identify the	10. State
explain how changing	the mass and atomic	size of a kinetic energy	conditions.	live, neutral, and earth	Newton's Third Law of
temperature of a gas	in a number by using	store of an object.	10. Calculate the	wires in a three-pin	motion.
sealed container af	ects nuclear notation.	8. Calculate the	resistance of a	plug.	11. Apply
the pressure of the ga	. 10. Calculate the	kinetic energy store of	component.	12. Discuss the	Newton's Third Law to
10. Define densi	y. number of neutrons in	an object.	11. Required	choices of materials	examples of equilibrium
11. Use the de	sity an isotope by using	9. State the	Practical: Measure the	used in cables and plugs	situations.
equation to calculate	the nuclear notation.	factors that affect the	effect of changing the	in terms of their physical	12. State
mass or the volume of	an 11. Describe the	elastic potential energy	length of a wire on its	and electrical	Newton's First Law of
object or a sample.	differences between	store of a spring.	resistance in a	properties.	motion.
12. Required	isotopes.	10. Calculate the	controlled experiment.	13. Identify a	13. Apply
Practical: Measure	the 12. Identify the	elastic potential energy	12. Describe the	variety of electrical	Newton's First Law to
mass and volume	of type of decay taking	store of a stretched	resistance	hazards associated with	explain the motion of
objects and liquids	and place from a nuclear	spring.	characteristics of a	plugs and sockets.	objects moving with a
calculate their dens	ties equation.	11. Describe	filament lamp.	14. Calculate the	uniform velocity and
	sity 13. Complete	energy transfers	13. Determine the	charge transferred by a	objects where the speed
equation.	decay equations for	involving elastic	resistance of a	current in a given time.	and/or direction
13. Define spe	cific alpha and beta decay.	potential energy and	component based on	15. Calculate the	changes.
heat capacity.	14. Rank the	kinetic energy stores.	information extracted	energy transferred by a	14. Define
14. Use	and three types of nuclear		from an I–V graph.	charge passing through	acceleration.
manipulate the spe	cific radiation in order of		14. Compare the	a p.d.	15. Calculate the
heat capacity equation	to their penetrating power		characteristics of a	16. State and	acceleration of an object
calculate	and range in air.		variety of electrical	apply the law of	using $a = \Delta v / t$
energy/mass/tempera	ure 15. Describe how		components, describing	conservation of energy	16. Calculate the
	eat the penetrating powers		how the components	in a circuit.	resultant force when an
capacity given the oth			can be used.	17. Calculate	object is acted by two
15. Required	measured.		15. Find the	energy transfer in	forces acting along the
Practical: Determine	the 16. Describe the		potential difference	kilowatt-hours.	same line.
SHC of a metal bloc	of path of radiation types		across a component in a	18. Convert	17. State what a
known mass by measu			circuit by using the p.d.	between efficiencies	parallelogram of forces
the energy transferre			rule.	stated in percentages	is.
the block and	its 17. Describe the		16. Calculate the	and those stated in	18. State what a
temperature rise.	process of ionisation.		current in a series circuit	decimal forms.	parallelogram of forces
16. Define the te	rms 18. Define half-		containing more than	19. Calculate the	is used for.
specific latent heat, la			one resistor.	power rating of a device	19. Write down
heat of fusion, latent			17. Measure the	from the energy	what is needed to draw
of vaporisation.	of a sample remaining		p.d. across parallel	transferred and the time	a scale diagram of a
17. Use	the after a given number of		circuits and explain any	of operation.	parallelogram of forces.
equation E=mL	to half-lives.		discrepancies.		,

	calculate mass, specific latent heat or energy. 18. Describe and explain how energy is transferred by conduction in materials. 19. Describe ways to reduce unwanted energy transfers.	20. Plot a graph showing the decay of a sample and use it to determine half-life.		 18. Describe the effect on the resistance in a circuit of adding a resistor in parallel. 19. Required Practical: Investigate the effect of adding resistors in series and parallel on the size of the current in a circuit. 	20. Calculate the charge transferred by a current in a given time.	 20. Use a parallelogram of forces to find the resultant of two forces. 21. Describe how the acceleration of an object depends on the size of the resultant force acting upon it. 22. Describe the effect that the mass of an object has on its acceleration. 23. Describe how to calculate the resultant force on an object from its acceleration and its mass. 24. State what the inertia of an object means. 25. State what the inertia of an object means. 26. Describe how to measure the extension of an object when it is stretched. 27. Describe how to measure the extension of a spring changes with the force applied to it. 28. Required Practical: Forces and extension.
Learning Checkpoint Tasks	 Changes of states Density SHC 	 Properties of ionising radiation Half-life	 GPE and KE Elastic potential energy 	 Series and parallel circuits Resistance 	National gridPower	Newton's lawsAcceleration

Common Assessment Task	Year 10: Common Assessment 1	Year 10: Common Assessment 2	
Mock Exam (if applicable)			End of year Exam: Full Paper 1
Interleaved Knowledge	Key knowledge acquired previously during the GCSE course:Energy crisis and resources	 Key knowledge acquired previously during the GCSE course: Molecules and matter Electricity 	 Key knowledge acquired previously during the GCSE course: Energy Radioactivity Electricity