Year 10 Maths Learning Journey

Spring Term 6

Proportion and proportional change: Probability

Core knowledge	Reference
Know how to add, subtract and multiply fractions (R) "Why do we ensure fractions have a common denominator before adding or subtracting?"	$\underline{\text { WORKSHEET }}$
Find probabilities using equally likely outcomes (R) "What makes events equally likely to occur?"	WORKSHEET
Use the property that probabilities sum to 1 (R) "What does the word 'complement/union/intersect' mean? Where is this represented on the Venn diagram?"	$\underline{\text { WORKSHEET }}$
Using experimental data to estimate probabilities "Why is experimental probability different from theoretical probability?"	
Find probabilities from tables, Venn diagrams and frequency trees "How do we know which cell value is the denominator when calculating a probability from a two-way table?"	$\underline{\text { WORKSHEET }}$
Construct and interpret sample spaces for more than one event (R) "How many outcomes will there be in total? How do we know?"	$\underline{\text { WORKSHEET }}$
Calculate probability with independent events "Give an example of a pair of independent events. Give an example of a pair of events that aren't independent"	$\underline{\text { WORKSHEET }}$
Use tree diagrams for independent events "What are the different methods for finding the probability of 'at least one'? Which is the most efficient?"	$\underline{\text { WORKSHEET }}$
$\underline{\text { Use tree diagrams for dependent events }}$"Give me an example of two events which are dependent."	
$\underline{\text { Construct and interpret conditional probabilities (tree diagrams) (H) }}$"Why do the probabilities change between trials? How do they change?"	
Construct and interpret conditional probabilities (Venn diagrams and two-way tables) (H) "What does 'given' mean? Which part of the Venn diagram/two-way table does this refer to"	$\underline{\text { WORKSHEET }}$

Learning Checkpoints

LC Title	Completed	Dirt
Percentages and interest		

Key Vocabulary:

Array: An arrangement of objects, pictures, or numbers in rows and columns
Conditional probability: the probability of an event (A), given that another (B) has already occurred.
Denominator: In the notation of common fractions, the number written below the line
Dependent events: Two events are dependent when the outcome of the first event influences the outcome of the second event.

Equally likely: In an experiment (trial in statistics) the result is the outcome.
Estimate: To arrive at a rough or approximate answer by calculating with suitable approximations for terms Event: A possible outcome of a statistical trial, for example 'heads' when a coin is tossed.

Exact value: Exact value is where you cannot estimate the value you must be precise
Expectation: Known as the product of the probability of an event occurring, denoted $P(x)$, and the value corresponding with the actual observed occurrence of the event.

Expected value: In probability theory, the expected value is a generalization of the weighted average.
Frequency trees: a way of organising information. They can then be used to solve probability problems.
Given: The term "given" in probability is associated with conditional probability. It simply means the probability of an event, if the event has already happened.

Independent events: Two events are independent if the occurrence of one event does not affect the chances of the occurrence of the other event.

LCM - the common multiple of two of more numbers which has the least value
Numerator: in the notation of common fractions, the number written on the top - the dividend (the part that is divided).

Outcomes: The result of a statistical trial
Product: The result of multiplying one number by another.
Relative frequency: How often something happens divided by all outcomes.
Sample space: The sample space is the set of all possible outcomes of a trial. The sum of all the probabilities for all the events in a sample space is 1.

Show: To show is to use numbers to demonstrate a certain property
Simplest form: A fraction that has been reduced fully.
Systematic: Having a pattern or order to the way you work
Tree diagram: a way of showing combinations of two or more events. Each branch is labelled at the end with its outcome and the probability is written alongside the line.

Two way tables: A table in which the rows represent the categories for one category variable, the columns represent the categories of a second category variable

